Estimating the Pen Trajectories of Static Handwritten Scripts using Hidden Markov Models
نویسنده
چکیده
Individuals can be identified by their handwriting. Signatures are, for example, currently used as a biometric identifier on documents such as cheques. Handwriting recognition is also applied to the recognition of characters and words on documents—it is, for example, useful to read words on envelopes automatically, in order to improve the efficiency of postal services. Handwriting is a dynamic process: the pen position, pressure and velocity (amongst others) are functions of time. However, when handwritten documents are scanned, no dynamic information is retained. Thus, there is more information inherent in systems that are based on dynamic handwriting, making them, in general, more accurate than their static counterparts. Due to the shortcomings of static handwriting systems, static signature verification systems, for example, are not completely automated yet. During this research, a technique was developed to extract dynamic information from static images. Experimental results were specifically generated with signatures. A few dynamic representatives of each individual’s signature were recorded using a single digitising tablet at the time of registration. A document containing a different signature of the same individual was then scanned and unravelled by the developed system. Thus, in order to estimate the pen trajectory of a static signature, the static signature must be compared to pre-recorded dynamic signatures of the same individual. Hidden Markov models enable the comparison of static and dynamic signatures so that the underlying dynamic information hidden in the static signatures can be revealed. Since the hidden Markov models are able to model pen pressure, a wide scope of signatures can be handled. This research fully exploits the modelling capabilities of hidden Markov models. The result is a robustness to typical variations inherent in a specific individual’s handwriting. Hence, despite these variations, our system performs well. Various characteristics of our developed system were investigated during this research. An evaluation protocol was also developed to determine the efficacy of our system. Results are promising, especially if our system is considered for static signature verification.
منابع مشابه
Estimating the Pen Trajectories of Static Handwritten Scripts using
Individuals can be identified by their handwriting. Signatures are, for example, currently used as a biometric identifier on documents such as cheques. Handwriting recognition is also applied to the recognition of characters and words on documents—it is, for example, useful to read words on envelopes automatically, in order to improve the efficiency of postal services. Handwriting is a dynamic ...
متن کاملDigital Pen for Handwritten Digit and Gesture Recognition Using Trajectory Recognition Algorithm Based On Triaxial Accelerometer- A Review
In this review paper we are going to discuss a systematic trajectory recognition algorithm framework that can construct effective classifiers for hand writing & gesture identification. Review of Digital Pen for Handwritten Digit and Gesture Recognition using Trajectory Recognition Algorithm based on Accelerometer is discuss for the identification of 2-D handwriting digits and 3-D hand gestures....
متن کاملHolistic Farsi handwritten word recognition using gradient features
In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...
متن کاملHandwritten Signature Verification Using Complementary Statistical Models
This paper describes a system for performing handwritten signature verification using complementary statistical models. The system analyses both the static features of a signature (e.g., shape, slant, size), and its dynamic features (e.g., velocity, pen-tip pressure, timing) to form a judgment about the signer’s identity. This approach’s novelty lies in combining output from existing Neural Net...
متن کاملSegmentation and reconstruction of on-line handwritten scripts
On-line handwritten scripts consist of sequences of components that are pen tip traces from pen-down to pen-up positions. This paper presents a segmentation and reconstruction procedure which segments components of a script into sequences of static strokes, and then reconstructs the script from these sequences. The segmentation is based on the extrema of curvature and in ection points in indivi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005